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ABSTRACT

t is known that the trace is a characteristic of the endomorphisms of a vector space, and it is an invariant of

matrices representation of these endomorphisms. This notion was generalized in the context of a category,
and its properties are used to construct some quantum topological invariants. In this article we show the
generalization of the notion of a trace in the categories and some of its applications.
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1 Introduction

One can say that each model mathematics represents some facts or some
structures which are from the domains of natural sciences, of society sciences
and even from the variety of life. Working on the models allows one to
find the knowledge which is helpful to improving the models and applying
to industry, education, ... One of the most popular algebraic structures is
a vector space over a field. That is a model containing the configurations
called the vectors and the actions among the vectors. The vector spaces are
the ground to define the algebraic structures more complicated, for example,
the rings and the algebras. Let V' be a finite dimensional vector space. The
information about V' can be described through its basis, its duality or the
linear maps on itself. We pay attention to a characteristic of its linear maps
called trace. The trace of an endomorphism f in End(V') can be determined
by using matrix representation of f and it does not depend on the choice
of the basis (see e.g., [5]). Other way to determine the trace is using some
special structures of the category Vecty of finite dimensional vector spaces as
in Theorem 2.4. This approach allows one to generalize the notion of a trace
of an endomorphism in the context of categories (see |5, 3]). One found the
interesting applications of trace, in particular in the construction of quantum
invariants (see [7, 9]). In this article, we have an interest in systematizing
the notion of a trace and its properties.

The text is organized in four sections. In Section 2, we recall some defini-
tions and results about the trace in the category Vecty of finite dimensional
vector spaces over a field k. Section 3 shows the generalization and system-
atizes the notion of a trace in the context of the pivotal categories. Finally,
in Section 4, we represent an application of the trace in the construction of
quantum invariants.

2 Trace in category Vecty

In this section we summarize some results about the trace and its prop-
erties in the category of finite dimensional vector spaces Vecty.

Definition 2.1. A category € is the following data:
1) a class of objects Ob(%),
2) for every objects X,Y € Ob(%), the class Homy(X,Y') of morphisms
from X toY,
3) for any objects X,Y,Z € Ob(¥), a composition map Homy (Y, Z) X
Homg (X,Y) — Homg(X,Z), (f,g) — f o g which satisfy the fol-
lowing arioms:
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a. The composition is associative, i.e., (fog)oh = fo(goh),

b. For each X € Ob(¥), there is a morphism 1y € Homy (X, X) such
that 1x o f = f and golx = g for any f € Homy (Y, X), g €
Homg (X, Y).

Note that one can write X € ¢ instead of X € 0b(%) and f € Homy(X,Y)
can write f: X — Y.

Vecty is the category of finite dimensional vector spaces over a field k.
Its objects are finite dimensional vector spaces over k and its morphisms are
k-linear maps. Let V € Vecty, call (e;);e; a basis of V. Then each f €
Endvyect, (V') has a matrix (a;;); jer in the basis (e;)ier, and the sum )., a;
is called the trace of the endomorphism f, denoted by tr(f) = >, ; ai.
This number does not depend on the choice of a basis of V. In particular,
dim (V') = tr(Idy ).

Proposition 2.2. The map tr : Endyee, (V) — k, f +— tr(f) is a k-linear,
and furthermore, tr(f o g) =tr(go f) for f,g € Endyec, (V).

Some additional structures in the categories can be considered, it endows
the categories the desired properties. We are interested in the case of a cat-
egory endowed with a tensor product ®y. A monoidal category is a category
¢ equipped with a tensor product satisfying some compatible conditions (see
[6, 5]). A monoidal category % is k-linear if for any U,V € % the morphisms
Homy (U, V) form a k-module and if the composition and tensor product are
bilinear.

For U,V € Vecty, one defined a tensor product U ®; V' which is also a
finite dimensional vector space and for f € Homg(U,V),g € Homg(X,Y),
the definition of f®y g € Homy (U @y X,V @, Y) is well-defined (e.g., see [5]).
Category Vecty equipped with the tensor product ®y is a monoidal category.
Furthermore, each V' € Vecty there is a vector space V* = Homy(V k) €
Vecty called its duality and for f € Hom(U, V') there is a linear map called
its transpose f*: V* — U* given by

< fa),u >=<a, f(u) >,

for € V*,u € U where < f*(a),u >= f*(a)(u). We have an isomorphism,
see [5]:

Proposition 2.3. Let U,V € Vecty. Then the map \py : V @ U* —
Homy (U, V') given by

Aoy (v® a)(u) = alu)v (1)

forue Uwv eV and a € U* is an isomorphism. In particular, V @ V* ~
Endvect]k (V) .
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Proof. First, suppose A\py(v ® a) = 0, ie., a(u)v = 0 for all u € U. It
implies that & = 0 or v = 0, then v ® a = 0. Next, let f € Homy (U, V') and
denote (e;);e; a basis of U, its dual basis is (¢');c;. We consider the element
Yo fle)) ®e € V@ U*. Then we have

Avy (Z fle) ® ei) (e;) =Y €'(e;)fes) = fle;) for all j € I.

i€l i€l

This means that Ay,yv (3., f(e;) ®€') = f. Thus the map Ay, is an iso-
morphism. In particular, for U =V we have V ® V* ~ Endyec, (V). O

Furthermore, for each V' € Vect, we have an interest in the special mor-
phisms called evaluation map evy and coevaluation map coevy which are
given by

—
evi: V'RV =2k a®u— <a,v> and,

coevy: k — VeVil— Zez‘@ei,
where (€');c; is the dual basis of the basis (e;);cr of V.

Denote 7y : VW — W@V, v ® w — w ® v the switch of V and W.
Using these maps we have

Theorem 2.4. The composition

-1 N
ev y

Endyee, (V) ~25 V @ V' 2% Ve @ v 2%
defines the trace tr on Endyee, (V).
Proof. For f € Endveet, (V) we can check
N (f) = (f © Tdy-) o codvy (1).

Recall that (e;);c; is a basis of V and (e%);c; is its dual basis. One gets

(f @Idy+)o coevy (1) = > fle) @€,

then 7y« (32, fei) ®@e') = >0, €’ @ f(e;). Furthermore, f(e;) = 3, ajie;,
hence e_\;v (Zz Gi X f(GZ)) = Zi,j 5ijaji = tI‘(f) L]

It is not difficult to check tr(f o g) = tr(go f) for f,g € Endyec, (V) and
tr(f*) = tr(f)-
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3 Traces in pivotal categories

In previous section we have shown a way to define a trace in Vecty using
the special morphisms Ay v, evy and coevy. In this section we explain how
to define a trace in a pivotal category. We recall first the definition of a
pivotal category (for details, see [2, 8]) then present the notion of a trace in
the pivotal category.

3.1 Definitions

Let € be a monoidal category and A, B € €. A duality between A and B
is given by a pair of morphisms (o € Homg (k, B® A), f € Homy (A ® B, k))
such that

(B & IdA) o (IdA ®Oé> =1Id, and (IdB ®ﬂ) o (a X IdB) =Idg.

A pivotal category (or sovereign) is a strict monoidal category %, with
a unity object k, equipped with the data for each object V € € of its dual
object V* € € and of four morphisms

v VFRV =k, coovy: k — V@V
— —
evy: Ve V' =k, coevyk -V eV

such that (a;\/, C@Vv) and (EV, CEEVV) are dualities which induce the same
functor duality and the same natural isomorphism (V @ W)* = W* @ V*.
The family of isomorphisms

is a monoidal natural isomorphism called the pivotal structure.

It is clear that Vecty is a pivotal category with the tensor product ® and
the duality mentioned in previous section. Category of finite dimensional
modules over a quantum group associated to a Lie (super)algebra is pivotal
(see e.g., [1, 4]).

3.2 Traces in pivotal categories

Let € be a k-linear pivotal category. For V € ¥ and f € Endg(V), one
can determine a scalar trgz(f) € k ~ Endy(k) by

trr(f) =evy o(f ®Idy~)o coevy € Endg (k).
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One calls trg(f) the right trace of the endomorphism f. The left trace of f
is defined by

trr(f) =evy o(ldy- @ f)o coevy € Endg (k).

Moreover, for VW € ¢ and f € Endg(V ® W), one can also define the
partial right trace ptryp and the partial left trace ptr; as below

ptre(f) = (Idy ® <(EW) o(f ®Idwy+)o (Idy ® C@VW) € End¢(V),
— —
ptr; (f) = (evy ®@Idw) o (Idy« ®f) o (coevy @ Idy ) € Endy (V).
We have the proposition

Proposition 3.1. Let V.W € €. Then
(1) Vf € Homg(V, W) and g € Homy (W, V),
trr(f o g) = trr(go f) and trp(f o g) =trr(go f),

(2) Vf € Endg (V@ W),

trr(ptrp(f)) = trr(f) and trp(ptr,(f)) = trp(f).

Proof. That the assumption % is pivotal means the left dual and the right
dual in % coincide. This implies that

ev o(f* ®1d) =ev o(Id®f), ev o(Id® f*) =ev o f ® Id) and

(f ® Id)o coev= (Id @ [*)o coev, (f* ® Id)o coev= (Id @ f)o coev .

It follows that the first statement holds. The second one holds from the
definition of the partial trace and (V @ W)* ~ W* @ V*. O

Remark 3.2. 1. In the category Vecty, the right trace and left trace co-
incide, i.e., tr = trg = try.

2. In general, the right trace and left trace do not coincide.

Next we represent a pivotal category constructed from the representa-
tions of a quantum group. To simplify, we consider the category of finite
dimensional representations over the quantum group associated with the Lie
algebra sl(2).
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3.3 Category of weight modules over U/sl(2)

Recall that a Hopf algebra means an algebra H over C, with a unit ele-
ment 1, equipped a homomorphism A : H — H® H, an anti-homomorphism
S : H — H, and a homomorphism ¢ : H — C satisfying the compatible con-
ditions (see [5, 7]). In the terms of a Hopf algebra, A is called the coproduct,
S the antipode and ¢ the counit. Quantum group U,sl(2) is an associative
algebra over C generated by the generators K, K~ ', E/ and F, subject to the
following relations

KK '=K 'K =1, KEK™ = ¢*E,
K—K!
KFK™' = ¢ ?F B, F] = ———
q—q

where ¢ € C* is a complex parameter. It is a Hopf algebra with the coproduct
A, the counity ¢ and the antipode S are defined by

A(E)=1®2E+E®K, e(E) =0, S(E) = —-EK™,
AF)=K'®F+F®]l, e(F) =0, S(F)=—KF,
AK)=K @K, e(K)=1,  S(K)=K"

We consider the finite dimensional modules over ,s(2) in which each module
splits as a direct sum of highest weight modules which will be defined below.
A such module is called a weight module. For a module V' and a scalar A # 0,
denote by V* the subspace of all vectors v € V : Kv = Av. The scalar \ is
called a weight of V if V* # {0}. One has EV* ¢ V?* and FV* ¢ V4 ™
We recall the definition of a highest weight module in [5]. Let V be a U,s[(2)-
module and A be a scalar. A non zero element v € V' is a highest weight vector
of weight \ if Fv = 0 and if Kv = \v. V is a highest weight module of highest
weight A\ if it is generated by a highest weight vector of weight .

It is proven that any non zero finite dimensional U/,5[(2)-module contains
a highest weight vector (see [5]).

Suppose V, W are the highest weight modules over U;sl(2). Using the
maps coproduct A and antipode S one can determine the action of U,sl(2)
on V@ W and V* = Homc(V,C): for v € V,w € W and a € U,s1(2),

a.(v@w) = Z amyv ® a)w,
where we used the notation A(a) = ) aq)®aq), and for o € V*, a € Uysl(2),

a.c = aoS(a),
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Figure 1 Representation of the morphisms f,Idy, [dygw

(for more details, see [5]). With these actions V ®@ W and V* are the modules
over U,sl(2). Let € be the category of finite dimensional weight modules over
U,s1(2). It is known that € is a pivotal category (see [8]), its pivotal structure
is given by

n
evy: €' ®ej — e'(e;) = 045, coevy: 1 +— E e e,
i=1
n
— ; ; — ; _
evy: e; ® e — e'(Key), coevy: 1 +— g et @ K e,
i=1

where (€;)i—1., is a basis of V and (¢');;., is the dual basis of (e;);=1.,- Note
that the pivotal structure is determined by element K € U,s[(2). We can
check that tl"R(Idv) = tI‘L(Idv) = tI‘(Idv) =n=dmV.

4 Application

In this section we represent how to apply the trace in a pivotal category
to construct an invariant of a link diagram (for more details, see [9]). We
describe the method through an example.

First, we recall a technique of presenting morphisms of a tensor category
by planar diagrams (see [5]). Let % be a tensor category. We present a
morphism f : U — V by a box with two vertical arrows oriented downwards
as the first component in Figure 1. The tensor product and the composition
of f and g are represented in Figure 2. For the identity of V*, we represent
by the vertical arrow directed upwards colored by V. Figure 4 represents the
braiding and its inverse of the category % . It is known that these graphs form
a tensor category, and there exists a functor F' (called Reshetikhin-Turaev
functor) from the category of the graphs to the category & (see [9]).

Then let I be a planar diagram of a link L. We decompose I' into the
elementary graphs mentioned above.

Finally, by applying the functor F' one gets the morphism F(T") € End(C)
as in the decomposition of the graph I' the elementary graphs at the bottom
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Figure 2 — Representation of the tensor product and the composition

. . — — — —
Figure 3 Morphisms evy, coevy, evy, coevy

are the cups and these at the tops are the caps. Moreover, Endy(C) ~ C.
Thus, for each diagram I' we determine a complex number F'(I'), this number
depends only on the isotopy class of the link L.

An example of the calculus for the Hopf link I' is illustrated in Figure 5
where

—

F(F) = (GVV X <e—Vw) O (Idv* ®CW,V & IdW*) o (Idv* ®CV,W X IdW*)O

— —
(coevy @ coevyy).

It is clear that F(I') € Endy(C) ~ C.
\'4 w w \'4
Figure 4 — Morphisms cyw, c‘_,’IW

OD@ e
AW,

Figure 5 — The decomposition of the Hopf link
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SU TONG QUAT HOA CUA VET TRONG CAC PHAM TRU THEN CHOT
Ha Ngoc Phu, Nguyén Huyén Trang
Khoa Khoa hoc tu nhién, Truong Dai hoc Hung Vuong, Phii Tho
Tom 1At

T

a da biét vét la mot tinh chat dac trung ctia cac tu dong cdu ctia mot khong gian véc to va né la mot bat bién
clia cdc ma tran biéu dién cic tu dong cdu do. Khai niém vét da duge téng quét héa vao ly thuyét pham tru

va céc tinh chét ctia n6 dugc st dung dé€ xay dung mot s6 bat bién t6 pd lugng ti. Trong bai bdo nay chung toi
chi ra su tong quét ctia khai niém vét trong cdc pham tru va vai Ging dung cta khdi niém nay.

T khéa: Ve, dai sé Hopf ruy bang, bdt bién ciia cdc day.
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